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Abstract. By means of extensive computer simulations we analyse in detail the two-
dimensional±J Ising spin glass with ferromagnetic next-nearest-neighbour interactions. We
found a crossover from ferromagnetic to ‘spin glass’-like order both from numerical simulations
and analytical arguments. We also present proof of a second crossover from the ‘spin glass’
behaviour to a paramagnetic phase for the largest volume studied.

1. Introduction

At present it is clear that the lower critical dimension of Edwards–Anderson Ising spin
glasses is at some point betweenD = 2 andD = 3 [1]. By using different numerical
techniques as for instance Monte Carlo simulations, exact ground-state calculations and
diagonalization of the transfer matrix, it is rather well established that the two-dimensional
Ising spin glass presents a transition atT = 0. Furthermore, an experimental realization of
a two-dimensional spin glass also points to a transition only atT = 0 [2, 3]. However, the
values of the critical exponents are still a matter of controversy [1, 4–7, 3]+.

In a recent paper Lemke and Campbell [9] studied the two-dimensional±J Ising spin
glass with nearest-neighbours interactions adding a ferromagnetic interaction between next-
nearest-neighbours. Surprisingly, they found numerical evidence for a spin glass transition
at finite temperature simulating intermediate lattice sizes.

In order to gain more insight into the nature of the low-temperature properties of the
model we have computed through extensive simulations a variety of global quantities as
well as staggered ones (i.e. observables defined in one of the two sublattices in which the
system naturally divides), like spin glass and ferromagnetic susceptibilities, specific heat,
Binder cumulants, magnetizations and the spin glass order parameter.

In particular we studied how the originally stable staggered phase is destroyed by the
spin glass interaction and finally we studied whether the spin glass phase is stable in the
thermodynamic limit.

§ E-mail address: giorgio.parisi@roma1.infn.it
‖ E-mail address: ruiz@chimera.roma1.infn.it
¶ E-mail address: stariolo@mail.ufv.br
+ Recently it has been pointed out by some authors [8] that the two-dimensional Ising spin glass shows a phase
transition at finite temperature, nonetheless the scaling plots of these works are compatible with aT = 0 phase
transition in agreement with all the previous cited studies.

0305-4470/98/204657+12$19.50c© 1998 IOP Publishing Ltd 4657



4658 G Parisi et al

We shall show numerical proof for two different crossovers: the first from the staggered
ferromagnetic phase to a spin glass phase; and the second from the spin glass phase to a
paramagnetic phase.

This paper is organized as follows. In the next section we shall define the model and
describe limiting cases in the parameter space. Section 3 maps the model to the random field
Ising model (RFIM) and we shall obtain analytical evidences of both crossovers (moreover
we shall compute the dependence of the first crossover length on the parameters of the
model). In sections 4 and 5 we shall numerically study the model, finally we present our
conclusions.

2. The model

The model we are considering is defined by the following Hamiltonian on a square lattice
with periodic boundary conditions

H = −
∑
〈ij〉

JijSiSj −K
∑
〈〈kl〉〉

SkSl (1)

where 〈ij〉 denotes sum over all the first nearest-neighbour pairs (distance 1) and〈〈kl〉〉
denotes sum over all the second nearest-neighbour pairs (distance

√
2).The couplingsJij are

quenched variables withJij = ±λ with probability 1
2. λ andK are positive constants whose

ratio determines the relative strength between spin glass and ferromagnetic interactions. In
the rest of the paper we fixK = 1. In order to fix the notation we also define the variance
of the Jij distribution asσ 2

J ≡ J 2
ij = λ2.

We next describe two limiting cases of the model (forK = 1):
• For λ → ∞ the system is the two-dimensional spin glass for which is known that

Tc = 0 [1, 4–7, 3].
• When λ = 0 the whole lattice decouples into two independent sublattices (that

we shall denote hereafter as sublattices 1 and 2, the black and white sublattices on a
chess board). Each sublattice is itself a two-dimensional ferromagnetic Ising model and
will have a phase transition (paramagnetic–ferromagnetic) just at the Onsager temperature:
Tc = 2/ log(1+√2) ' 2.269. The order parameter of the phase transition is the so-called
staggered magnetization, i.e. the magnetization of one of the two sublattices. Obviously, the
probability distribution of the total magnetization of the whole lattice for low temperatures
will take into account the four possible different magnetizations of the two independent
sublattices.

Initially we have, whenλ = 0, ferromagnetic order (in both sublattices), that can be
affected by the introduction of spin glass couplings. The effect of these couplings is to
couple (by means of a spin glass interaction) both sublattices.

In the next section we will examine analytically the effect of the introduction of random
couplings (linking both sublattices) in the original stable (staggered) ferromagnetic order.

3. Analytic results

In this section we shall study the analogy, suggested by Lemke and Campbell [9], between
the Hamiltonian defined by equation (1) and the RFIM.

We can rewrite the original Hamiltonian equation (1) in the following way

H = −
∑
〈i1j1〉

σi1σj1 −
∑
〈i2j2〉

τi2τj2 −
∑
i1

∑
j2(i1)

Ji1j2σi1τj2 (2)
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where the indicesi1, j1 (i2, j2) run over the sublattice 1 (respectively 2),〈i1j1〉 (〈i2j2〉)
denotes sum to first nearest-neighbour pairs in the sublattice 1 (respectively 2) andj2(i1)

denotes the sum over the two nearest-neighbours (j2’s) of the sitei1 (in the two positive
directions fromi1) in the whole lattice. Moreover we have denoted the variables of the
sublattice 1 (2) asσ ’s (respectivelyτ ’s).

We now fix the temperature to a small value and all the spins inside the sublattice 1 are
fixed in the up state. Next we will examine the cost in energy to do a compact droplet (in
the sublattice 1) with all its spins flipped down, with the spins of the sublattice 2 fixed to
an arbitrary configuration.

The Hamiltonian of the model with all theτ spins fixed to an arbitrary configuration is,
modulo a constant,

H[σ |τ fixed]= −
∑
〈i1j1〉

σi1σj1 −
∑
i1

[∑
j2(i1)

Ji1j2τj2

]
σi1

≡ −
∑
〈i1j1〉

σi1σj1 −
∑
i1

hi1σi1 (3)

i.e. a RFIM where the magnetic field has zero mean and variance:

hihj =
{

2σ 2
J if i = j

0 elsewhere.
(4)

In particular we can think that all the spins in theτ sublattice are fixed up. It is easy to
reproduce all the steps of the Imry–Ma argument [10, 11] (by turning on the temperature) to
show that one can find large regions where it is favourable energetically to flip all the spins
inside the region and hence to destroy the long-range order of sublattice 1 independently of
the configuration of sublattice 2 (and vice versa).

Thus we have shown that the ferromagnetic order (in either or in both sublattices)
is unstable against an infinitesimal strength of the spin glass couplings, i.e. initially the
sublattices 1 and 2 are fixed to up (staggered ferromagnetic order) and we have found
that for any configurationτ the sublattice 1 disorders, and by redoing the same steps with
sublattice 1 fixed (and disordered) we can see that the originally ordered sublattice 2 also
disorders.

Moreover, following Binder [12], we should expect that there exists a crossover length
Rc such that forR < Rc the staggered ferromagnetic order is stable but this order is unstable
for scalesR > Rc. The analytical expression for an RFIM with ferromagnetic couplingK

and uncorrelated magnetic field with varianceσ 2
h is [12]

Rc ∝ exp

[
C

(
K

σh

)2
]

(5)

whereC is a constant (O(1)), and so for our particular model (whereK = 1 andσ 2
h = 2σ 2

J ),
we finally obtain

Rc ' exp

[
C

2σ 2
J

]
= exp

[
C

2λ2

]
. (6)

Obviously whenλ is infinitesimally small (i.e. we put an infinitesimal amount of spin
glass disorder in the model) the crossover ratio is exponentially large and ferromagnetic order
will only be destabilized in extremely large systems. Nevertheless, in the thermodynamic
limit the spin glass disorder is always relevant.

Finally, we can estimate that forλ = 0.5 (the value that we have used in our numerical
simulations presented in this work)Rc ' 7, assuming thatC is just 1.



4660 G Parisi et al

At this point for L > Rc, whereL is the linear size of the system, the picture is the
following: both sublattices are broken in clusters (inside of them all the spins, in average,
point in the same direction) of size less thanRc interacting between them. From the Imry–
Ma argument it is clear that the ‘effective’ interaction between these clusters is short range
(i.e. it could be very large but not infinite). Consequently, we have a two-dimensional spin
glass with short-range interactions. This phase can be thought of as a frozen disordered
phase (like the spin glass phase) where the clusters play the role of the spin in the usual
spin glass phase.

However, we know that there exists no spin glass order at finite temperature for short
range spin glasses in two dimensions, and so we conclude that there must be a second
crossover from the spin glass behaviour to paramagnetic behaviour as the size of the system
increases. We need only a correlation length greater than the range of the interaction between
the clusters to return to the usual short range spin glass in two dimensions that has no phase
transition. In the next sections we will try to put this fact in more quantitative grounds.

4. Numerical simulations and observables

We have simulated, using the Metropolis algorithm, systems with linear sizes ranging from
L = 4 to L = 48 and averaging over 200 to 10 000 samples depending on the size.
The largest lattice size simulated in reference [9] used in the computation of their Binder
cumulant wasL = 12.

In all the runs we have used an annealing procedure from higher temperatures to the
lower ones in order to thermalize the system. In table 1 we report the statistics we have
used. We have performed in the annealing procedure for all the temperatures the same
number of thermalization steps (NT ), shown in table 1.

For a given temperature we runNT steps for thermalization and measure during 2NT .
We then lower the temperature and repeat the process always with the sameNT . We shall
return to the issue of the thermalization time at the end of this section.

In the following paragraphs we will describe the observables that we have measured in
our numerical simulations.

We have measured the global (m) and staggered (ms) magnetizations:

m ≡ 1

L2

∑
i

Si ms ≡ 2

L2

∑
i1

Si1 (7)

where the sum runs over all the lattice sites (i) and over a sublattice (i1) respectively.

Table 1. Description of our runs. The step in temperatures was 0.1 in all runs. (*) means
that for theL = 48 lattice in the measure of the staggered overlap we have only simulated 100
samples.

L T ’s Samples Thermalization time

4 [1.5,4.0] 10 000 10 000
6 [1.5,4.0] 10 000 10 000
8 [1.5,4.0] 4000 30 000

16 [1.5,3.0] 1633 30 000
24 [1.5,3.0] 700 60 000
32 [1.5,3.0] 1576 90 000
48 [1.4,2.5] 426(*) 900 000
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In order to calculate spin glass quantities we have simulated two replicasα andβ in
parallel with the same disorder. The overlaps between the replicas, global (q) and staggered
(qs), are:

q ≡ 1

L2

∑
i

Sαi S
β

i qs ≡ 2

L2

∑
i1

Sαi1S
β

i1
(8)

where, again, the sum runs over all the lattice sites (i) and over one of the two sublattices
(i1) respectively.

The magnetic global and staggered susceptibilities (without theβ factor) are defined as:

χ ≡ L2[〈m2〉 − (〈|m|〉)2] χs ≡ L2

2
[〈m2

s 〉 − (〈|ms |〉)2]. (9)

The spin glass or overlap susceptibilities (χq , χsq ) are defined by:

χq ≡ L2[〈q2〉 − (〈|q|〉)2] χsq ≡
L2

2
[〈q2

s 〉 − (〈|qs |〉)2]. (10)

We have also measured the Binder cumulants of the magnetization: globalgm and
staggeredgsm,

gm ≡ 1

2

3− 〈m4〉(
〈m2〉

)2

 gsm ≡
1

2

3− 〈m4
s 〉(

〈m2
s 〉
)2

 (11)

and Binder parameters of the overlaps: globalgq and staggeredgsq ,

gq ≡ 1

2

[
3− 〈q4〉

(〈q2〉)2

]
gsq ≡

1

2

3− 〈q4
s 〉(
〈q2
s 〉
)2

 . (12)

Finally the specific heat is defined by:

CV ≡ 1

L2

(
〈H2〉 − 〈H〉2

)
. (13)

In order to determine a safe thermalization time,NT (written in table 1) we have used
the method proposed by Bhatt and Young [5] which consists of running, at the lowest
temperature, with ordered (all spins up) and high temperature initial configurations and
monitoring the behaviour of the susceptibilities (in our case the non-connected overlap
susceptibility) with the Monte Carlo time. When the two curves reach the same plateau we
can say that the system has thermalized. In figures 1 and 2 we show this procedure for two
of our biggest lattices and at the lower temperatures simulated (i.e.L = 32 andT = 1.5
andL = 48 andT = 1.4 respectively).

We remark that we have used forall temperatures of the annealing procedure the value
that we have computed for the lower one (reported in table 1).

5. Numerical results

5.1. Crossover from ferromagnetic to spin glass

In this section we will show numerical proof of the first crossover: from a staggered
ferromagnetic phase to a ‘spin glass’ phase.
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Figure 1. The non-connected overlap susceptibility
against the Monte Carlo time in a double logarithmic scale
for one of the lower temperature that we have simulated
(T = 1.5) and forL = 32. The number of samples is 100.
The upper curve is from a configuration with all the spins
up and the lower curve is with the starting configuration
chosen at random. One can say that the system has
thermalized when there is no difference between the two
curves and both stay on a plateau. We have chosen
thermalization timet = 90 000 (i.e. logt = 11.4).

Figure 2. The non-connected overlap susceptibility
against the Monte Carlo time in a double logarithmic
scale for the lowest temperature that we have simulated
(T = 1.4) and for the largest latticeL = 48. The
number of samples was 25. The upper curve is from a
configuration with all the spins up and the lower curve is
with the starting configuration chosen randomly. We have
chosen thermalization timet = 900 000 (i.e. logt = 13.7).

Figure 3. Susceptibility of the staggered magnetization as
a function of the temperature. The lattice sizes are (bottom
to top): 4, 6, 8, 16, 24, 32 and 48. Here and in the rest
of the figures we have used the following symbols for the
lattices: L = 4 triangle,L = 6 square,L = 8 pentagon,
L = 16 three-line star,L = 24 four-line star,L = 32
five-line star andL = 48 six-line star.

It is natural to study this crossover examining first the susceptibility and the Binder
cumulant of the staggered magnetization, figures 3 and 4 respectively. They are the observ-
ables that atλ = 0 describe the paramagnetic-staggered ferromagnetic phase transition.
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Figure 4. Binder cumulant of the staggered magnetization
as a function of the temperature. The lattice sizes are
(bottom to top in the right part of the plot): 48, 32, 24,
16, 8, 6 and 4.

Table 2. Maximum ofχs(L, T ) in temperature and the temperature at whichχs(L, T ) reaches
the maximum.

L T (χmax
s ) χmax

s

8 2.7(1) 1.255(4)
16 2.3(1) 4.21(2)
24 2.0(1) 9.6(2)
32 1.8(2) 19.9(4)
32 1.6(2) 54(2)

In figure 3 it is possible to see how the point where the staggered susceptibility reaches
the maximum drifts quickly to zero with increasing system size. Moreover, in figure 4 there
is no crossing of the Binder cumulant: this gives stronger evidence that this parameter (the
staggered magnetization) does not show a phase transition at finite temperature, i.e. in the
thermodynamic limit〈|ms |〉 = 0 for all temperatures different from zero.

More quantitatively, from the data of table 2 it is clear that the temperatures in which
χs reaches the maximum, that we denote asT (χmax

s ), goes to zero following a power law:

T (χmax
s ) ∝ L−0.29(4) (14)

using only the data of the lattices: 8, 16, 24, 32 and 48. This fit hasχ2/DF = 0.5
3 , where

DF means for the number of degrees of freedom in the fit.
These numerical results support our previous analytic result that the staggered

ferromagnetic phase is unstable against an infinitesimal perturbation of the kind of a spin
glass interaction between the two sublattices.

Moreover, we have predicted the presence of a crossover between the staggered
ferromagnetic phase and a ‘spin-glass’-like phase for lattices of linear sizes of order 10. To
see this crossover we can analyse the specific heat. All the lattice sizes show a maximum
near the Onsager temperature (Tc = 2.26). We will see that these maxima are the ‘souvenir’
of the staggered phase transition. In particular we can examine the scaling of the maxima,
that we denoteCmax(L), against the lattice size. The result is given in figure 5. In this figure
we have also plotted the finite size scaling prediction for the pure Ising model (λ = 0) that
is

Cmax(L) ∝ logL. (15)
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Figure 5. The maximum specific heat as a function ofL
for L = 4, 6, 8, 16, 24, 32 and 48. We have marked the
finite-size scaling prediction of a logarithmic divergence for
the pure model (λ = 0). The straight line has been obtained
from a fit to the formulaA logL + B usingL = 4, 6 and
8.

It is clear from figure 5 that up toL = 8 the data follow in good agreement the prediction
of the pure model (i.e. up toL = 8 the low-temperature region is staggered ferromagnetic).
But betweenL = 8 andL = 16 the system crosses over to a different behaviour where
there is no divergence of the specific heat, i.e.α < 0. This result is in very good agreement
with our analytical estimateRc ' 7.

Hence, this plot shows us clearly a first crossover between the staggered ferromagnetic
phase and a ‘spin glass’ like phase. In the first part of the crossover the specific heat
diverges logarithmically (α = 0) whereas in the second part of the crossover the specific
heat does not diverge (α < 0).

It is clear that the task that remains is to check that effectively what we have named as
a ‘spin glass’ phase has really the properties of a spin glass phase.

To do this we can study the susceptibility and the Binder parameter of the total overlap.
In a spin glass phase the magnetization is zero but not the overlap, that becomes the order
parameter. If the low-temperature phase is spin glass the overlap susceptibility should peak
near the transition temperature and the value of the peak should grow with some power of
the lattice size (more precisely asLγ/ν). Moreover, the analysis of the Binder cumulant
should show a clear crossing between curves of different lattice sizes.

In figures 6 and 7 we show the data for the susceptibility and Binder parameter of the
total overlap. We can see again the crossover staggered spin glass in figure 7. The curves
of the lattice sizes 4, 6 and 8 cross practically at the critical temperature of the pure model
(λ = 0, vertical line). If we examine the crossing point of pairs of lattices for growing
sizes, we observe that these crossing points drift to lower temperatures. For instance, the
crossing point of the 16 and 32 lattices is nearT = 1.9. This suggests that the limit of
this sequence of crossing points may be zero. This would imply that the spin glass phase
is unstable and is crossing over to a paramagnetic phase.

Moreover, the overlap susceptibility does not present a sharp maximum as a function
of the temperature (see theL = 24, 32 and 48 curves). We can extract one conclusion of
this fact.
• As long as the spin glass is stable we will again expect thatχq(T ) should show a

sharp maximum as a function ofT , or at least that we have independent spin glass order in
both sublattices (i.e. some sort of staggered spin glass order). From figure 6 it is clear that
χq does not show a sharp peak in the region that we have simulated (see, for instance, the
L = 32 andL = 48 data). Moreover the crossing point of the Binder cumulant of the total
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Figure 6. Susceptibility of the total overlap against the
temperature. The lattice sizes are (top to bottom): 48, 32,
24, 16, 8, 6 and 4. From this figure it is clear thatχq for
L = 16, 24, 32 and 48 does not show a maximum.

Figure 7. Binder parameter of the total overlap against
the temperature. The lattice sizes are (bottom to top in the
right part of the plot): 48, 32, 24, 16, 8, 6 and 4. We have
marked with a vertical line the Onsager temperature.

overlap of two different lattices is drifting to lower values of the temperature, and so we
pass to discuss the second possible option: spin glass order on both sublattices. In this case
the staggered overlap susceptibility should have a sharp peak at an intermediate temperature
which characterizes a phase transition between a paramagnetic phase and a spin glass one.

To study this issue in more detail, in section 5.2 we will examine the overlap defined
only in one of the two sublattices.

5.2. Crossover from spin glass to paramagnetic

In figures 8 and 9 we show the susceptibility and the Binder cumulant of the staggered
overlap (i.e. the overlap computed only in one of the two sublattices).

It is clear that these two figures are similar to figures 3 and 4. For example, there is
no crossing in the Binder cumulant. We remark that we have performed small statistic on
theL = 48 lattice and so we obtain large errors. Taking into account only the lattice sizes
L = 4, 6, 8, 16, 24 and 32 the effect is clear: the thermodynamical Binder cumulant goes
to zero for all the temperatures simulated.

The ‘apparent’ critical temperature (defined as the value whereχsq reaches the maximum)
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Figure 8. Susceptibility of the staggered overlap against
the temperature. The lattice sizes are (bottom to top): 48,
32, 24, 16, 8 and 4.

Figure 9. Binder parameter of the staggered overlap
against the temperature. The lattice sizes are (bottom to
top): 48, 24, 32, 16, 8, and 4.

Table 3. Maximum in temperature of the staggered overlap susceptibilityχsq (L, T ), and the
temperature at whichχsq (L, T ) reaches the maximum. ForL = 48 the error bars do not permit
a safe estimate of the maximum.

L T (χmax
qs ) χmax

qs

8 2.4(1) 2.27(3)
16 2.1(1) 7.2(2)
24 1.9(1) 15.1(3)
32 1.6(2) 28(2)

goes to zero following the law

T (χmax
qs ) ∝ L−0.23(5) (16)

where we have used L = 8, 16, 24 and 32 in the fitthat hasχ2/DF = 0.8
2 . The data used

in this fit has been reported in table 3.
Within the statistical error the exponent is the same as in the staggered magnetization.

We can compare this figure with that computed for the two-dimensional spin glass [5]:
1/ν = 0.38(6). If we are seeing the pure two-dimensional spin glass transition which
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occurs atT = 0, then we will expect a behaviour of the apparent critical temperature like
Tapp ∝ L−0.38(6), which is, within the statistical error, the law that we have found for this
model (equation (16))†: the difference between the two exponents is 0.15(8) (i.e. almost
two standard deviations). Obviously our simulations were done in a range of temperatures
far away of the critical point (T = 0).

Both figures 8 and 9 suggest that the phase transition is atT = 0. In other words, there
is not a spin glass phase in the sublattices 1 and 2. The whole system seems to be crossing
over to a paramagnetic phase.

6. Conclusions

We have studied the two-dimensional Ising spin glass model with next-nearest-neighbour
interactions both analytical and numerically.

We have analytically obtained that the system should present two different crossovers
as the volume grows: the first one from a staggered ferromagnetic phase to a spin glass
phase for intermediate sizes, and a second crossover between this spin glass phase to a
paramagnetic one that will dominate the physics in the thermodynamic limit. Moreover
we have obtained the dependence of the first crossover length (staggered-spin glass) on the
parameters of the system.

Then we have checked this scenario by performing extensive numerical simulations.
We have clearly established the first crossover (staggered-spin glass) and have found strong
proof of the second (spin glass paramagnetic). In particular, the exponent that governs the
shift of the maxima of the spin glass susceptibility is compatible with the known value for
the pure two-dimensional spin glass.
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